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Abstract. It is shown how information about the pseudoatom in germanium can be derived 
from knowledge of the charge density gained from total-energy calculations. The charge 
densities of the equilibrium crystal and of a crystal where the ions in each cell have been 
moved by small. equal amounts 6 R  in opposite directions (the LTO mode at r) are used to 
derive the Fourier components of the pseudoatoms at reciprocal lattice vectors. The total- 
energy calculations are carried out by solving the Kohn-Sham equations within the local 
density approximation. The harmonic contribution to the Fouriercomponents ofthechange 
in charge density is derived from total-energy calculations at two different valuesol 6R.  By 
using symmetry. linear equations involving the real and imaginary parts of the rigid ion and 
the deformation can be obtained from a total-energy calculation with just one distortion of 
the crystal. The parts of these linear equations involving the unknowns are linearly depen- 
aent, and the calculated results have approximately the same dependence. It is shown that 
any discrepancies are due to anharmoniceffects. The resultsshow that the rigid ion isatomic- 
like with only a small deviation from spherical symmetry. and that the deformation is 
significant and acts mainly on the bond charges. Contour plots of the various contributions. 
including the anharmonic one, in the [ 1101-[OOI] plane are drawn. 

1. Introduction 

The change in the electronic charge density to first order in the displacements when a 
phononispresent inacrystal isanimportant quantity. It isofparticular use incalculating 
the electronic contribution to the dynamical matrix of a crystal (Sinha 1973). From this 
the phonon frequencies and modes can be calculated. 

There are many methods of calculating the phonon frequencies and modes. These 
methods can be broadly classified as empirical approaches and ab initio approaches. 
Two well-known ab initio methods of calculating phonon frequencies are (Srivastava 
1990): 

(i) total-energy calculations (Chadi and Martin 1976, Xunc and Martin 1982). 
(ii) calculation of the dielectric matrix (Van Camp eta1 1979. Falter 1988). 

Both these methods have been shown to be successful but have, in a practical sense, 
some limitations. For example, they both involve a lot of computation, so that (i) is only 
affordable at symmetry points and along symmetry directions (Srivastava and Kunc 
1985, 1988, Strauch er al 1990) and (ii) gives more information than is necessary for 
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calculatingphonon frequencies. Furthermore, numericaldata provided by such mcthods 
are not easy to convert into many concepts with which to get physical insight. 

When the effective charges are zero, the first-order change in charge density can 
be expressed in terms of pseudoatoms (Ball 1975. 1977). The calculation of phonon 
frequencies and eigenvectors can be performed if the pseudoatoms are known, Cal- 
culation of the pseudoatom: is in principal a better approach than the other mcthods 
(see above) because it involves the exact amount of information required and should 
provide useful physical insight. It may also be possible to understand different types of 
phonon behaviour in terms of different types of pseudoatom. 

In this paper we outline a program (see section 2) to deduce information about the 
pseudoatom from total-energy calculations (TECS). In  particular, for germanium we use 
the charge densities of the perfect crystal and of a crystal in which the ions in each unit 
cell move by the same amount but in opposite directions (the LTO mode at r), to calculate 
the Fourier components of the pseudoatom at reciprocal lattice vectors (RLV) g. 

In the past (Falter 1988) calculation of the pseudoatom has required calculation of 
the dielectric matrix. Calculating the pseudoatom from TECS overcomes this problem 
but might seem unnecessary. as we could calculate phonon frequencies directly from the 
TECS. We think, however, that it isadvantageous: firstly, we are interested in more than 
just the phonon frequencies and the pseudoatom should give more physical insight into 
what is going on. Secondly. there are methodsof using a limited amount of pseudoatom 
information to deduce the pseudoatom at all values of q + g. either by using phenom- 
enological models(1ike themoveable bondcharge modelofWeber(1977)) anddeducing 
the parameters of these models from the pseudoatom information (the way to link such 
phenomenological modelswith pseudoatom theory hasalready beenshown (Ball 1988)) 
or by assuming analytical expressions for the parts of the pseudoatom and fitting the 
parameters. The former method should give useful physical information. such as the 
size and shape of bond charges. 

An advantage of concentrating on pseudoatoms is that they ensure that the first- 
order change in charge density is consistent with the symmetry of the crystal. As we 
show in section 5, this may not happen if the charge is calculated from the TECS without 
considering symmetry. Another advantage of the whole approach is that, having got 
an accurate, consistent first-order change, we can calculate the anharmonic effects 
accurately. 

One of the aims of this paper is to learn about the physical nature of the pseudoatom 
in germanium. To this end we have drawn some contour plots (see section 6) of the 
changes in the electron density for the LTo(T) mode due to the two separate parts of the 
pseudoatom. Plots of the anharmonic effects are also drawn. 

2. The program 

The first-order change in the electronic charge density can be described by a vector field 
f'. Then the electroniccontribution to D$(q) ,  the cupelement ofthe dynamical matrix 
inq-space. isgiven by (Ball 1987) 

Z(M)-'aw:,iax,(q +g)fi(q+g)exp[i(q +g).(R,, - R,)] (1) 
8 

where W,. is the pseudopotential of the ion at R,. in the unit cell, M is the mass. and the 
sum is over reciprocal lattice vectorsg. 

+ Falter ( IY IW)  hdS introduced a related concept, the quasi-ion, 
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In a non-polar semiconductor like germanium where the effective charges are zero, 
the change in the electronic charge density can be expressed, to first order in the 
displacements of the ions from their lattice positions, as a sum of pseudoatoms (Ball 
1975,1977): 

where b,(q + g) is perpendicular to (q + g) and so can be written (Ball 1977) 

In equation (2) the first term is the electronic charge p that moves rigidly with the 
iont (we shall call this the electronic rigid ion) and the second term b represents the 
deformation. 

Total-energy calculations always involve the calculation of the electronic charge 
density, as they use the density-functional method (Srivastava 1990). As said earlier, 
the main aim of this paper is to use the charge density from total-energy calculations to 
deduce information about p and b. 

The total electronic charge density can be written. to first order in the displacements 
SR, exp(iq.I) of the ion at ( I  + Rs), as 

f ( q  + g) = (4 + g)p& + 9) + bs(q + g) 

bA? +g) = (Q +g)  x B,(q +g) 

(2) 

(3) 

(7 ~ ( r  - I - R , )  + (1/T)6Rr.x:f&7 + g) exp[i(q + exp(-ig.R,) (4) 
8 

where 1 is a lattice vector. t is the volume of the unit cell and the first term is the charge 
density of the equilibrium lattice. Thus, in principle. the vector fieldf,(q + g) can be got 
from the charge densities of TECS, provided these are available, for given q + g. at all 
possible directions of SR,. Such calculations are unfortunately restricted to values of q 
in symmetry directions and then often only at high symmetry points. Nevertheless we 
are able to learn something about the pseudoatom from such calculations. 

In germanium we write s’ and s for the two ions in the unit cell i.e. R,?, = 
-(l,l,l)a/S. Inversion symmetry makes the calculation easier. because it yields 

and hence 
fV(4 + g) = -f9.(-(4 + g)) 

PA4 + g) = ps.(-(q + g)) 

( 5 )  

(6)  
We now concentrate on the derivation of p(g) and b(g), for which the total energy 

calculation for the LO mode at r as well as the perfect lattice calculation is required. Let 
us write 

wheref, andf, are both real, with a similar definition of p ~ .  pN, bR and bN. As the 
Fourier transform p,(r) is a physical quantity, 

To ensure that bN(g) transforms in the same way as gp(g), we have the following 
requirement: 

bs(q + g) = b , , ( - ( q  + g)). 

f s  (4 + g) =fR(q + g) + i f N  (4 + g) (7) 

p N ( - g ) = - f N k ) .  (80) 

bN(-g) = b N ( d  (8b) 

b,(g)exp(-ig.R,) + b,.(g) exp(ig.R,) = 0. (9) 

Translational invariance (Ball 1975) requires that 

Thus b,(g) exp(-ig.R,) is purely imaginary. 

? In previouspapersp included the ioniccharge. IC is more convenient to take i t  as the electroniccharge only 
and we shall do this in future. 
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The charge density U&) of the undistorted crystal can be written in terms of pR and 
PN: 

auk) = 2 b R k )  c 0 s k - R ~ )  + P~k)Sin(g .Rs) ] .  (10) 
When the ions are displaced, the charge density depends on the displacements 6R,. 

In our calculations these displacements have the symmetry representation r and are 
such that 

6R, = 6 R  8R, 6R,s = -6R8R, (11) 
with 6 R  = 20.005 and +0.015. For thiscase the charge density o(g. 6R) is, to first order 
in 6R. 

O(g- 6R) = %k) f 2 6 R ( 8 / a ) R s k P ~ k )  CoskR,) 

- gPR(g) sin(g.R,) + d k ) l  (12) 
where 

d(g) = bR cos(g-R,) + b N  sin(g.R,). (13) 

3. The total-energy calculations 

The Fourier coefficientsp(g) of the charge density were calculated from a self-consistent 
solution of the Kohn-Sham equations within the local-density approximation (Hohen- 
berg and Kohn 1964, Kohn and Sham 1965). The interaction between valence electrons 
and ionic cores was simulated by the ab inirfo pseudopotential of Ge (Bachelet er al 
1982). The electronic exchangexorrelation interaction was treated within the scheme 
of Wigncr (1937). Well converged calculations were made by expanding the pseudo- 
wavefunction in a plane-wave basis set with a kinetic energy cut-off of 15 Ryd. 

For the undistorted Ge crystal, the Brillouin zone summation was performed by 
using two special k-points within the irreducible segment of the zone (Chadi and Cohen 
1973). The calculated equilibrium lattice constant is 5.602 A, which, like most other 
calculations based on the local-density approximation, is within 1% of the experimental 
value of 5.65 A. 

For the Lm(r) mode of atomic displacements the translational symmetry of the 
distorted crystal remains the same as in the undistorted structure, but the point group 
symmetry is reduced from Oh to D3+ For this symmetry we used the calculated equi- 
librium lattice constant and a set of five special k-points (Yin and Cohen 1982) for the 
Brillouin zonesummation. Calculationswerefound toconverge well with anenergycut- 
off of 15 Ryd. 

4. Anharmonic effects 

The charge density (a(g, 6R) - uu) can be explained in powers of 6R for small 6R. 

o(g, 6R) - 00 = o,(g)(bR)". (14) 
n 

The first term in the sum represents the harmonic effects and the remainder the anhar- 
monic effects. 
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The pseudoatom theory is valid to first order only and does not include the anhar- 
monic effects. The TECS, however, calculate u(g, 6R) to all orders. To calculate the 
pseudoatom, we must try to eliminate the anharmoniceffects from the calculated values 
of u(g, 6R). We do this in the usual way: firstly we eliminate all even-order terms in 
equation (14) by calculating [o(g, 6R)  - u(g, -6R)] /2 .  We then assume that all fifth- 
and higher order terms in equation (14) are negligible, and calculate u1 and uj from the 
above quantities for 6R = 0.005a and 0.015a. The relative values of U ,  and uj teU us 
how important the anharmonic effects are. 

5. Symmetry and the linearity condition 

Let Trepresent an operator of the diamond lattice which leaves the undistorted crystal 
invariant. Then 

.(g, 7'(6R,)) = @'(g), 6R,)  (15) 
where the notation is obvious. A similar result holds for the coefficients U,. 

This symmetry requirement produces some immediate results; for example 

PN(g) = (16) 
whenever g is in an axial plane. 

To calculate p&), pN(g) and d(g), one would in general need to know u,(g) for 
displacements in three different directions, whereas we only calculate for displacements 
in one direction. This difficulty is easily overcome by using the above symmetry proper- 
tiesofthe perfect crystal. Note that, ingeneral, thereare fivequantities to find, although 
the results for the undistorted crystal provide one result using equation (11). 

To see how symmetry allows us to get the other results and because there are some 
interesting points to make, let uslook ata  particular case, the mvg = (h /a ) (5 ,3 ,1 ) .  In 
the undistorted crystal 48 RLVS can be obtained by operators T which all have the same 
value of U,. Under distortions of the form equation ( l l ) ,  this set breaks up into four 
sets, typical members of each set being (h/a)(5,3,1), ( h / a ) ( - 3 , 1 , - 5 ) ,  
( k / u ) ( - l , - 5 , 3 ) ,  and (h/a)(-1,5,-3). We thus get one equation from uo(g) of the 
undistorted crystal and four linear simultaneous equations from the distorted TEC. 

These four equations are not independent. They involve four variables dr, dy, d, and 
(pN - pR) and the determinant of their coefficients is zero. This lack of independence 
occurs at all values of g. The linear simultaneous equations from the distorted crystal 
always involve the same combination of pR and pN and are linearly dependent. 

This means that the values of U ,  should satisfy the same linear relation. It h m s  out 
that for most g the values of U ,  calculated from the TEC approximately satisfy this 
relation. For example, forg = (2x/a)(5,3,1), the results are within 0.2%. 

We now present arguments to show that the discrepancies from the exact satisfaction 
of the relation are caused by the anharmonic effects. Although similar arguments can 
be presented for allg, let us look at the simple example wheng = (h/a)(l , l , l) .  In this 
case d(g) = 0. There are two equations, one for g and one for g', where g '= 
( h / a ) ( l , - l ! - l ) ;  the value of ul(g) should be three times the value of ul(g'). There is, 
however, in all our calculations a slight deviation from this, a suitable measure of which 
is E, = 11 - 3u,(g')/ul(g) I. We can work out E, in three different ways in which the 
amount of anharmonicity systemically decreases. Firstly (i) we subtract the charge 
density of the undisturbed crystal from that of the distorted crystal with 6R = -0.005~; 
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Table 1. ValuesofE, = 11 - 30,(g')/o,(g)lcalculatedbydifferentmethods(i).(ii)and(iii). 
For explanation see text. 

Method 
,. 

( 9  ( 4  (iii) 

E, 0.087 194 0.001 727 0.0000749 

Table 2. The calculated values of pseudoatom quantities pR, pN and d = (d , ,  d, .  dJ ,  (for the 
ion at R,) in units of electrons per unit cell. The rows marked * are in 10-l of these units. 

Ph d. 

(1.1.11 1.19655 
io.o.2j 0.78577 
10.2.2) 0.00671 
(1,1.3j -0.15108 
(2.2.2) -0.14845 
(0.0.4) -0.18545 
(3.3.1) 0.03508 
(02.4) -0.11134 
(2.2.4j -0.07591 
(3.3.31 -0.01876 
(1,IS) 0.00227 
(0.4.4) 0.023 19 
(5.3.1) 0.01487 
i4.4,2j -0.01327 
(0.0.61 -0.01776 
( o w j  -0.00435 
(3.3.5)' -0.0653 
(22.6)' 0.084 15 
(4.4.4). 0.3248 
(5.5.11' 0.4718 

(6.43)' 0.4240 
(5.5.3). 0.3593 
(7,3,l)' 0.3901 
(0.0.8)' 0.3584 
(3.3.7). 0.2421 

-0.12061 0 
0 0 
Q -1.817M1 
-0.06195 -1.61457 
-0.14492 0 

0 0 
0.11214 -0.13252 
0 0.93406 
-0.197 14 0.02835 
0.01749 0 
0.06451 -0.42880 
0 -0.16823 
-0.00033 0.02691 
-0.00154 -0.000 15 

0 0 
0.0 -0.10371 
0.0632 0.2782 
0,1794 -3.7688 
0.0757 0.0 
0.0598 -1.3472 
0.0738 -8.5291 
0.0 4.4511 
0.0778 0.9676 
0.0997 -0.7036 
0.0400 1.2781 
0.0 0.0 
0.0248 0.0284 

4 d; 

0 .  ~~ 0 
0 0 
0 0 

0~~ ~ 0 ~ 

0 0 

0.0 0.0 

,._, . .  ,,,,,, , , ,  , ,1, 

-1.64457 1.09638 

-0,13252 0.79507 

0.02835 -0.02835 
0 0 

-0.42880 0.17152 
0.0 0.0 
0.10667 -0,45454 . ..,. 
0.0 0.0 
0 0 
0.0 0.0 
0.2782 -0.3338 
-3.7688 2.5125 

0.0 0.0 
-1.3472 13.4716 
-8,5291 2.4370 

0.0 0.0 
-0.7138 -1.3974 
-0.7036 2.3455 
-3.6102 1.8835 

0.0 0.0 
0.0284 -0.0243 

secondly (ii) we substract the charge densities of the crystals with bR = -CO.O05u, and 
thirdly (iii) we carry out the procedure of section 3. The results are given in table 1. It 
can be seen that E,  gets smaller as the anharmonicity is reduced, thus confirming our 
hypothesis that the discrepancies are caused by the anharmonic effects. This hypothesis 
is further confirmed by the fact that these discrepancies are largest when the anharmonic 
effectsare largest, e.g. forg = (5,3,3). 

Because the anharmonic effects were reduced (see section 4) by using an approxi- 
mation, there is a small anharmonic part left in our calculation of U , .  The linear sim- 
ultaneousequations therefore do not obey the dependency conditions exactly. We need, 
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Figure 1. The electronic charge density in the [ilO] 
plane for the equilibrium lattice in germanium. This 
shows clearly the bond charges situated halfway 
between theionswhose positionsarerhown byadol. 
The contours are in units of electrons per unit cell 
volume 

Figure 2. The electronic charge density for the ger. 
maniumcrystalwhenit isdisorled byaLTO(r)phonon 
with 6R = 0.005, 

however, to ensure their exact agreement. This was done by an averaging process. For 
example, withg = (h /u) (5 ,3 ,1) ,  wegot twoequationsfor (pN - pR) + d,from t h e ~ e c  
results and averaged them, two equations for (pN - pR) + d, and averaged these, and 
then two equations for (pN - p ~ )  + d, andaveraged these. The resulting threeequations 
were thenusedasa basisforcalculatingpN - pR, d,, d,andd,.Thefourthequationused 
is the orthogonality condition 

g d ( g )  = 0. (17) 
This procedure obviously gives us a better measure of the first-order terms than can 

be achieved using the procedure of section 4 alone, because it uses all the calculated 
information. Also, if the charge densities were deduced using only the method of section 
4, they would be inconsistent. 

It is also interesting to note that if the pseudoatom is assumed rigid, there is only one 
variable in the linear equations and the values of o,(g) connected by symmetry must 
satisfy several conditions. 

We note that the relative size of any discrepancy of the TEC values from the required 
linear dependence is a measure of the importance of third- and higher odd-order 
anharmonic effects. 

6. The results 

In table 2 are presented the calculated values of the pseudoatom quantities p and d for 
the ion at R,. 
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Figure3. The change in electronic density due to the 
LTo(r) phonon with 6R = 0.005 (i.e. figure 2 minus 
figure 1). 11 contains the harmonic and the anhar- 
monic contribulions. 

-0.7 \ . , I 
- 0 . 2  0 . 0  OI.2 0.q 0 . 6  0.8 1.0 1 . 2 L 1 . 3  

Figuro4. As for figure3 bul due to the electronic rigidiononly .The units arcin 10-3eelectrons 
per unit cell. 

Let us first look at the results for p.  These calculations give both the real and the 
imaginary parts, which could not be achieved by using the perfect crystal TEC alone. It 
isalso interestingtosee that pRatg = (%/a)(0,0,2) cannot beobtainedfrom the perfect 
crystal. We note that pR behavesfairly smoothly withg except possibly at (3,3,1); there 
seems to be a sinusoidal variation, each oscillation decreasing by a factor of about 10. It 
is also noticeable that pN is small in general and, for large g, is a factor of 10 smaller than 
p ~ .  These observations suggest that p(r) does not deviate from spherical symmetry by 
large amounts. This suggests that a parametric model of the rigid ion could be fitted to 
these results (Ball 1990). Such a model might furnish information about the size and 



Pseudoatom information in Ge 

-0.7 1 , , , , , , , , , , , , , , 
-0.2 0.0 0.2 0.q 0.5 0.8 1.0 1.2 

Figure 5. As for figure 4 but due to the deformation only. 

1955 

3 

shape of the rigid ion. The contour plots discussed below give some hint as to the shape 
of the rigid ion. 

In comparing magnitudes of d and p,  it should be remembered that the correct 
comparison is between d and gpdp). It can be seen that the deformation is significant for 
theRrvs(0,2,2) and (1,1,3). It decreasesatapproximatelythesamerateasgpforlarger 
g. These results show that the deformation is a significant part of the pseudoatom and 
cannot beignored. as rigid-ion modelsdonot takedeformationintoaccount,ourresults 
show that such models at least lack physical suitability for the calculation of phonon 
frequencies ingermanium. We believe that this is the first time that pseudoatom deform- 
ation has been explicitly shown to be present in significant amounts in a crystal. 

To get some picture of the pseudoatom, we have drawn contour plots, in the plane 
with axes [110] and [OOl], of various contributions to the electron density. Figures 1-3 
are obtained from the TEC and use 2277 RLVS. In figure 1 is drawn the electron density 
of the perfect crystal. In figure 2 is drawn the charge density when the two basis ions in 
the primitive unit cell have moved apart, i.e. SR = 0.005. Figure 3 shows the change in 
charge density between figures 1 and 2. This includes the anharmonic effects. In figures 
4-6 the changes due to the electronic rigid ion, the deformation and to the complete 
electronic pseudoatom respectively are drawn. Figures 7-9 show the changes due to the 
anharmoniceffects. Figures4-9 wereplottedusingonly the416 ~ ~ v s o f  table2. Because 
the effects of the pseudoatom decrease rapidly with g, no significant features in the 
contour plots are likely to be lost by using this smaller number of RVLS. This is also true 
for the anharmonic effects. 

Figure 1 shows clearly the charges around the ions and the bond charges midway 
between the ions. Figure 2 shows that the stretching of the bond length results in a 
readjustment of the bond charge: the single broad maximum of the charge density in the 
perfect crystal has been deformed and now two maxima of equal magnitude appear 
which are symmetrically situated along the bonding direction. This arises because on 
bond-length stretching some charge is pushed away from the bond centre towards the 
region around the ions, as is clearly seen in the charge-difference plot, figure 3. (Exactly 
the opposite of this happens when compression of a bond length occurs.) 

Figure 4 is consistent with a fairly spherically symmetric electronic rigid ion that has 
an atomic -type density, thereby increasing the density in the direction of the movement 
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1.2 0 . 0  0.1 0.t 0.g 0.8 1.0 1 .21 .3  

Figure 6. As for figure 4 but due lo the complete electronic pseudoatom (i.e. the sum of 
figures 4 and 5). The units are in IO-? electrons per unit cell. 

of the neighbouring ion and decreasing it between the ions. This would give a dipolar 
effect at the ion, which is nullified by the core charge as the pseudoatom, with the core 
included, is in total neutral in charge. It looks as if there isvery little contribution to the 
rigid ion from the bond charge. 

The total change in charge density due to the deformation is zero, so that we can 
view the effect of the deformation as a transfer of charge. According to figure 5, the 
main effects of deformation seem to be a reduction in the bond charge by transferring 
the charge to the ion in such a way that the dipolar effect due to the electronic rigid ion 
is reduced. This is also confirmed by figure 6, and confirms our analysis of figures 1-3. 

Our plot (figure 6) of the total first-order change is very similar to that of Resta 
(1983). although he used a dielectric matrix and fewer RLVS. 

It should be remembered that the change in charge density due to the effect of 
pseudoatoms is linear in ionic movement. Thus, when this movement causes 
compression, i.e. SR = -0.005, the contour plots are the same but with the signs 
reversed. Similarly, when SR = 0.015, the contours are the same but the associated 
magnitudes are multiplied by three. 

Figures 7-9 show the anharmonic change in the electronic charge density for SR = 
0.005.0.015 and -0.015 respectively. The changes (figure 7) for SR = 0.005 arc small 
and show a slight increase in the charge at the bond charges between the separating ions. 
This contrasts with figure 8 where the bond charge is decreasing. The anharmonic effects 
(figure9) when the ionsmove towardseach other are straightforward: the bond charges 
are increased by an amount which is about half the increase due to the pseudoatom 
movement. I n  this case the anharmonic effect enhances the linear effect of the 
pseudoatom deformation which is to increase the bond charge (see above). 

7. Summary 

We have carried out total-energy calculations on the undistorted lattice of germanium 
and on lattice with a LTO(r) distortion. We separated the harmonic and anharmonic 



Pseudoatom information in Ge 1957 

-0.7 I , , , , , , . , , , , I 
-0.2 0.0 0.2 0.4 0.6 0.9 1.0 1 . 2 1 . 3  

Figure 7. The change in the electronic density due to the anharmonic effects with 6RT = 
0.005. (This is like figure 3 minus figure 6 except that fewer RLVS are used). The units are in 
IO-? electronsper unit cell. 

3 

-0.4 

-0.6 

-0.7 
-0 .2  0 . 0  0.2 0.4 0 . 6  0.9 1.0 1 .21 .3  

Figure9.AsiorRgure7butbR = -0.015. 
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parts of the changes in charge density and ensured that the former satisfied the symmetry 
requirements. We have used the results to calculate the Fourier components of the 
pseudoatom at reciprocal lattice vectors. We have found that the rigid ion behaves 
somewhat like an atom, and that the deformation is significant but smaller in magnitude 
and acts mainly at the bond charges. The total first-order change in the charge density 
due to a LTo(T) phonon calculated in the present pseudoatom work is similar to the 
dielectric results of Resta (1983). The model of the pseudoatomconstructed in this work 
can be developed further and applied to calculate phonon frequencies. We hope to 
investigate this in the future. 
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